SUMA

f(x)+g(x)	I	+∞	-∞
m	l+m		
+∞[]			
-∞□			

PRODUCTO

f(x).g(x)	L	0	+∞	-∞
m	1 . m			
0				
[]+∞				
□ -∞				

COCIENTE

f(x):g(x)	1	0	+∞	-∞
m	l:m			
0				
+∞				
-∞				

POTENCIA

f(x) ^{g(x)}	m	0	+∞	-∞
ı				
1>0				
0				
1				
+∞				

- 1) $Caso \infty \infty$ se resuelve realizando la operación o mediante el conjugado.
- 2) Caso $\frac{0}{0}$ se resuelve factorizando los polinomios del numerador y denominador, y simplificando.
- 3) Caso $\frac{\infty}{\infty}$ se resuelve por la regla de los grados. $\lim_{x \to a} \frac{P(x)}{Q(x)} = \begin{cases} 0 & \text{si grado } P < \text{grado } Q \\ \infty & \text{si grado } P > \text{grado } Q \\ \frac{a}{b} & \text{si grado } P = \text{grado } Q \end{cases}$

siendo a el coeficiente principal de P y b el coeficiente principal de Q.